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Abstract

End-to-end latency estimation in web applications is cru-
cial for system operators to foresee the effects of potential
changes, helping ensure system stability, optimize cost, and
improve user experience. However, estimating latency in
microservices-based architectures is challenging due to the
complex interactions between hundreds or thousands of
loosely coupled microservices. Current approaches either
track only latency-critical paths or require laborious bespoke
instrumentation, which is unrealistic for end-to-end latency
estimation in complex systems.

This paper presents LatenSeer, a modeling framework for
estimating end-to-end latency distributions in microservice-
based web applications. LatenSeer proposes novel data struc-
tures to accurately represent causal relationships between
services, overcoming the drawbacks of simple dependency
representations that fail to capture the complexity of mi-
croservices. LatenSeer leverages distributed tracing data to
practically and accurately model end-to-end latency at scale.
Our evaluation shows that LatenSeer predicts latency within
a 5.35% error, outperforming the state-of-the-art that has an
error rate of more than 9.5%.
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1 Introduction

Latency estimation enables operators managing large-
scale web applications [12, 33, 42, 49] to anticipate the im-
pacts of potential changes before scaling their services, opti-
mizing costs, adding features or adapting to changes in hard-
ware configuration or cloud computing deployments [33, 44,
47, 83]. For instance, the operators may wish to assess how
introducing a novel machine learning pipeline or migrating
some subset of services to a different data center would af-
fect customer-perceived latency. Such estimation is crucial to
prevent performance regression and to protect the end-user
experience: Google, Amazon, and Akamai have all noted
significant drops in traffic or revenue following a modest
(100+ms) increase in latency [1, 22, 37, 76].

To be pragmatic, operators of web applications desire a
latency estimation framework that meets the following goals.
(G1) Easy deployment. The system integrates with exist-

ing data collection systems, eschewing invasive and
labor-intensive custom instrumentation.

(G2) Flexible scenarios. The system estimates end-to-end
latency given hypothetical latency changes in any of
its constituent services, informing advanced decision-
making.

(G3) Realistic forecasts. The system should express con-
fidence in its results—sound decisions require sound
data and models.

In large-scale systems, however, these goals are challeng-
ing to fulfill. At scale, modern applications often comprise
hundreds or thousands of loosely coupled microservices [13,
29, 45, 71, 77, 89], where a single user request may touch thou-
sands of instances before generating a response [56, 71, 88].
In microservices architectures, a single service often inter-
acts with many others, forming a complex web of serial or
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parallel calls to fulfill a user request. Modifications in one
can thus affect others, leading to varied impacts on the end-
to-end latency of different requests.
State-of-the-art solutions fall short of meeting all three

objectives. Several works [33, 63, 64] require explicit instru-
mentation that makes them difficult and expensive to deploy
in different environments (G1). Other methods, which use
purely data-driven techniques, either do not targetmicroservice-
based web applications [30, 49, 75, 81], or are restricted to
making predictions for a subset of services [16, 88] (G2). Fi-
nally, the trend of leveraging deep machine learning models
for latency estimation would attempt to draw causal conclu-
sions through black-box methods that fundamentally can
derive only associations [58, 59], and are thus set up to fail
goal (G3) [67].
We present LatenSeer, a framework for estimating the

end-to-end latency distribution for large-scale microservices
applications, that is explicitly designed to fulfill goals (G1)—
(G3). As shown in the upper left of Fig. 1, LatenSeer piggy-
backs on the proliferation of distributed end-to-end trac-
ing in large-scale systems, such as Jaeger [32] or Open-
Telemetry [53], rather than demanding custom instrumen-
tation (G1). LatenSeer allows an operator (bottom left) to
answer the question: How will the end-users be impacted

by some hypothetical changes to the latencies of the underly-

ing microservices (G2)? LatenSeer accepts hypothetical la-
tency changes to services as inputs, and outputs the changed
end-to-end latency distribution. We apply LatenSeer on two
use cases of latency estimation: service placement (UC1)—
reasoning about the end user latency impact of resource
provisioning or service migration, and slack analysis (UC2)—
determining the latency budget available to alter a microser-
vice without impacting the overall response times of requests.
We validate LatenSeer via null prediction 1 on distributed
traces from two production sources to show that the under-
lying model is sound, and conduct controlled experiments
using a social network microservices-based benchmark to
evaluate the accuracy of latency estimation (G3).

Inside LatenSeer, we cast the latency estimation problem
as a causal model 2 of latency components through a sim-
ple principle: a complex service decomposes into the causal
interactions between its constituent microservices. The end-
to-end latency distribution for the entire application is thus
the combination of each component’s latency distributions.
LatenSeer overcomes multiple technical challenges that

arise when forecasting latency in large-scale systems. First,
distributed traces, which record the requests within dis-
tributed applications, often exhibit diverse execution paths.
1Null prediction refers to the experiments where LatenSeer derives the
predicted latency distribution under conditions of zero injected delay.
2In distributed tracing, "causality" usually refers to the order of events or
operations as they happened in relation to each other
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Figure 1: Overview of LatenSeer. Operators can pose hypothet-
ical scenarios into a trace-driven causal model and predict how
end-user latency would change relative to baseline.

Moreover, a single service might be involved in multiple top-
level APIs. As a result, aggregating the distributed traces re-
quires a data structure that is simultaneously succinct while
maintaining sufficient diversity of requests to ensure accu-
rate latency estimation [38]. A key idea in LatenSeer is the
use of set nodes to efficiently cluster traces that exhibit similar
execution paths.
Second, the latency of a parent service is a composite of

its child services’ latencies, underscoring the importance of
discerning all causal relationships. Identifying causal depen-
dencies from single requests is straightforward but aggregat-
ing them is complex due to clock skews and path-dependent
executions. To address this, LatenSeer introduces the succes-
sion time alongside set nodes to aid in deducing the causal
dependencies in child RPCs demonstrating similar execution
execution paths
Finally, to improve the accuracy of latency estimation,

LatenSeer profiles the joint distribution of child service la-
tency, departing from the convenient but misleading assump-
tion of mutual independence upon which most traditional
approaches have relied. Joint latency profiling accounts for
scenarios where the latency of different child services may
be interrelated, thus making latency estimates more accurate
than what previous models could achieve.

We implemented LatenSeer as a Python package, and use
it in a social network prototype built from the DeathStar-
Bench microservices benchmark (DSB) [26]. We evaluate
LatenSeer’s ability to make accurate latency predictions
through two real world scenarios, service placement (UC1)
and slack analysis (UC2). Our results show that LatenSeer
predicts end-to-end latency distributions within a 5.35% error
(D-statistic) with a mean of 2.7%. In contrast, the state-of-the-
art gives a minimum error surpassing 9.5% with a mean of
14.5%. Finally, we evaluate LatenSeer using two production
traces (Alibaba [45] and Twitter). We verify the soundness
of latency prediction through null prediction experiments
and demonstrate the scalability of LatenSeer on massive
production workloads.

This work makes the following contributions.
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• We propose trace-driven causal modeling as a methodol-
ogy for answering interventional latency estimation ques-
tions in large microservices architectures.
• We detail the design of the LatenSeer framework for ex-
tracting causal inter-service dependencies from traces gen-
erated by off-the-shelf distributed tracing systems to gen-
erate causal models of end-to-end latency.
• We demonstrate LatenSeer’s utility by accurately answer-
ing hypothetical questions on realistic scenarios with an
estimation error within 5.35% (D-statistic), outperforming
the state-of-the-art.
• We show LatenSeer’s scalability through experiments on
real-world traces from large-scale, complex production
systems.

2 Background and related work

2.1 The latency estimation problem

Software systems are constantly evolving; these changes
can affect latency. Tech giants such as Amazon, Google, and
Netflix implement thousands of daily deployments and pro-
duction changes across hundreds of services that comprise
their production environments [24, 40, 68]. Estimating the
impact of these frequent production changes ahead of time
is crucial, especially for managing risk, ensuring system sta-
bility, and maintaining Service Level Objectives (SLOs).
Latency estimation is the task of predicting the impact

of hypothetical service changes on end-to-end latency—the
entire execution latency of requests to some top-level API
endpoint across all the services involved in its execution.
The operators of large-scale services are accountable for bal-
ancing the service response times with features, resource
utilization, policy constraints, and costs. When evaluating
potential changes to a service, the operators face the conun-
drum of assessing how the modifications might impact the
response time—a critical factor in end-user experience.
To further elucidate, we highlight the importance of la-

tency estimation by considering several “high-stakes” service
changes.
Adding a new microservice. Introducing a new feature
often involves adding one or more microservices. While this
can improve customer experience, it may also slow down re-
sponse times as requests navigate through the added service.
Scaling strategies. For a video streaming service, scaling
up infrastructure can handle more users but may add latency
due to increased server interactions or data replication across
multiple sites.
Policy changes. Regulatory requirements might necessi-
tate deployment changes, like storing user data in specific
locations. This could lengthen end-to-end latency due to
longer data transfer times. Latency estimation can guide
operators in assessing and mitigating these impacts.

Latency estimation questions are interventionist: they con-
cern hypothesizing how a running system will behave after
it is changed. Conventional statistical and machine learning
tools, relying on observational data, fall short in answering
these queries due to their associative nature [60] and sus-
ceptibility to confounding variables [59]. Moreover, while
randomized controlled trials offer more precise results, they
are resource-heavy and inflexible [25, 74].

2.2 The state of the art

End-to-end latency estimation is important to engineering
planning, performance analysis and optimization, however,
the traditional approaches are deficient. To explain, we ex-
amine the main strategies deployed in practice.
Canarying releases. The canary release strategy, widely
utilized in production, facilitates risk reduction by incremen-
tally introducing software updates to a limited user group
before broader deployment [82]. With scarce engineering
resources, operators wish to conduct latency estimation be-

fore expensive engineering efforts are spent on the project.
Such a feasibility review should precede any live traffic anal-
ysis or A/B experimentation—canarying—on the resulting
component [79] to minimize cost and customer impact of
potentially poor design decisions.
Service dependency graphs. A common technique for un-
derstanding the causal dependencies between services is to
chart service dependencies, a method widely adopted in pro-
duction [35, 45, 46, 73, 80]. Large-scale applications requests
are represented as call paths through service dependency

graphs, which capture communication-based dependencies
between microservice instances. The call paths show how re-
quests flow among microservices by following parent-child
relationship chains. As such, service dependency graphs
serve an important tools in discerning the complex interplay
of services and optimizing application performance.

Many distributed tracing visualization tools [32, 35, 73, 90]
aggregate traces to construct service dependency graphs at
various detail levels (we will introduce distributed tracing
in §2.3). Yet, none, to our knowledge, have integrated latency
distribution into the service dependency graphs. Introduc-
ing latency estimation to a microservice-based dependency
graph faces hurdles. Alibaba [45] shows that the latency
of a service is stable among call graphs of similar topolo-
gies but varies significantly across different topologies, and
the latency of a service is stable when the call rate varies.
Some works [46, 80] use dependency graphs to guide auto-
scaling and service migration. Tprof [31] aggregated traces in
a fine-grained manner of sub-span analysis for performance
debugging.

While a service dependency graph outlines relationships
between services, it fails to detail the micro-level dynamics of
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Figure 2: An example trace from Jaeger. The left diagram shows the trace in a timeline view, and the right diagram shows the service
dependency graph generated by Jaeger.

Table 1: LatenSeer compared to state-of-the-art systems.

LatenSeer ORION CRISP WebPerf MysteryMachine
G1 ✓ ✓ ✓
G2 ✓ ✓ ✓ ✓
G3 ✓ ✓ ✓

execution order, including the nature of sibling relationships,
whether parallel or sequential. For instance, the service de-
pendency graph in Fig. 2 illustrates service compose-post
must await the responses from all seven child services to
complete its task. Yet, if we aim to comprehend how changes
in the media service affect compose-post, the service de-
pendency graph falls short. This limitation impedes accu-
rate latency estimation, posing a risk of relying on models
grounded in potentially incorrect assumptions about the
interrelationships of child services.
Latency-critical paths. Inmicroservice dependency graphs,
the latency-critical path represents the slowest sequence
of dependent tasks [84]. While its analysis facilitates the
identification of optimization prospects and bottlenecks in
distributed systems [7, 9, 12, 16, 21, 35, 61, 88], it can inadver-
tently obscure potential issues in off-path services. Hence,
incorporating slack time analysis for off-path services is ad-
vocated, aiding in refined capacity planning and mitigating
risks arising from shared-resource contention [16].
CRISP [88] uses critical path analysis on Uber traces to

help developers understand and optimize important ser-
vices. However, services off the latency-critical path are eas-
ily trimmed from the results. For example, service media
in Fig. 2 are not shown in the final results of CRISP. A singu-
lar focus on the latency-critical paths paints an incomplete
and misleading picture for end-to-end latency estimation,
emphasizing the need for a more holistic approach that in-
corporates the dynamic roles of all services in the system.
Latency modeling and performance prediction. Glean-
ing causal dependencies in existing large-scale systems, such
as building causal models of latency, has been explored in
the past decade. Researchers from Google, for example, built

theoretical frameworks to understand the latency profile of
arbitrary black box services [37, 55], which, like more recent
work over microservices [44], is focused around anomaly de-
tection. More recent white-box approaches to performance
modeling have also been proposed [2, 62].
Facebook’s Mystery machine [12] shares the motivation

of constructing a causal model using pre-existing data, pre-
dating modern tracing infrastructure, that works by initially
hypothesizing all possible pairwise relationships and grad-
ually rejecting the causality of each dependency through
counterexamples. Regrettably, the ensuing predictions are
brittle owing to incomplete methods for producing causal di-
agrams [34] and cannot handle various issues in tracing data,
such as clock skew and missing span. CRISP [88] shares a
similar motivation (G1) but lacks a causal treatise of latency
estimation. Similarly, Orion [49] also uses latency propa-
gation technique to calculate end-to-end latency. However,
it focuses on known service DAGs and fails to address the
causality in service dependencies. The study most closely
aligned with our objectives is WebPerf [33], which crafts
techniques surrounding service dependencies and latency
propagation. However, WebPerf is specifically tailored to
Microsoft’s Azure environment and relies on Azure-specific
hints to work. WebPerf employs domain-specific binary in-
strumentation, presenting a solution that isn’t universally
adaptable. In contrast, LatenSeer advances this approach by
adopting a data-driven strategy, relying on trace data that
are commonly available in today’s production systems.
Latency prediction is a well-trodden field with substan-

tial research in areas such as service selection [19, 85], ser-
vice composition [3–5, 10, 87], and business process model-
ing [14, 66]. Notably, with the rising popularity of serverless
workflows in many applications, there has been a surge in
research efforts aimed at latency prediction for these work-
flows. These efforts predominantly focus on resource op-
timization and reducing communication latency in server-
less workflows [17, 18, 50]. Distinctively, LatenSeer, not con-
strained by predefined workflows, offers a flexible solution
to latency predictions in microservice-based applications.
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2.3 The proliferation of distributed tracing

Distributed end-to-end tracing tracks requests’ execution
paths in a distributed system or application across different
components, including frontend devices, backend services,
and databases. Many production systems deploy distributed
tracing frameworks, such as OpenTracing [54], Zipkin [90],
and Jaeger [32], to track request traces and aggregated met-
rics, which is useful to examine hand-off between system
components [8, 57, 72], and to troubleshoot practical sys-
tem problems such as slow responses and errors [6, 20, 23,
27, 35, 43, 48, 53, 78]. The primary use cases of distributed
end-to-end tracing systems concern active system monitor-
ing [8, 57, 72], anomaly detection [6, 11, 27, 39, 47, 65, 69, 73],
and root-cause analysis [55, 83].

In our context, trace aggregation can be used to delineate
the interdependencies among all services within a microser-
vices system—allowing for data that is routinely collected to
be useful for latency estimation (G1). The left side of Fig. 2
shows a visual example of a trace constructed by Jaeger [32],
a state-of-the-art open source tracing framework, for a com-
pose post request to a benchmark of social network appli-
cation [26]. An end-to-end trace represents an execution
path through the system, whereas a span represents a logical
operation from a function. A span maintains not only the
causal relationship by keeping a reference to a parent span
but also the runtime execution details, such as start and end
timestamps to represent the duration of the operation. A
trace can be considered as a directed acyclic graph (DAG) of
spans, where each edge represents the causal relationships,
such as RPC calls, between two spans [72]. Besides tracking
causal relationships, a trace also captures temporal order
between a group of child spans that are concurrently called
by the same span.
We show an illustration of a service dependency graph,

created from 20 traces of compose-post requests, in the
right-hand-side diagram of Fig. 2. The completion of service
compose-post is contingent on even other services, such
as service media and service text. Below, we refer to the
services that are invoked by the same “parent” service in a
service dependency graph as sibling nodes.

2.4 Challenges of using distributed traces

to predict latency

Distributed tracing confers a great opportunity for pig-
gybacking latency estimation on existing data, providing
end-to-end visibility, and revealing service dependencies. Yet
this direction cannot provide end-to-end latency estimation
out of the box due to multiple challenges.
(1) Raw traces fail to capture interdependencies. The
perspective offered by each individual trace is too insular
to fully encapsulate the complexity of the entire system.
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Figure 3: Twitter trace characteristics.

Yet aggregation techniques to produce service dependency
graphs exhibit significant blind spots. Chief among them is
the problem that sibling nodes may themselves have com-
plex interdependencies that, when uncaptured, can result in
an incomplete portrayal of the performance dynamics and
intricacies, particularly in hypothetical scenarios, thereby
undermining the accuracy of latency estimation. Neverthe-
less, a cautious and careful approach can overcome these
limitations, as shown in §3, allowing distributed tracing to
be valuable resource for latency estimation.
(2) Small inaccuracies can snowball. The inevitability
of clock skew is a major issue for nuanced processing of
distributed tracing data. In a distributed tracing deployment,
spans are timestamped using the local machine’s clock upon
start and finish. However, the clocks on different machines in
a distributed system invariably drift apart, even with periodic
synchronization using the Network Time Protocol (NTP) [36,
41, 51, 52, 70]. This well-understood problem in distributed
computer stems from various factors, such as clock hardware
differences, environmental conditions, network latency, and
the resolution of the system clock. Consequently, this can
lead to misinterpretations in system performance analysis
and incorrect event ordering [12, 88], with minor errors
potentially amplifying to significantly impact conclusions
on performance behavior.
(3) The problem of scale. A single trace is not representa-
tive of the full service—any interventional questions must
account for the diversity of traces that execute in a produc-
tion environment. At Twitter, for instance, a request involves
12,000 spans on average, with some traces encompassing as
many as 25,000 (Fig. 3a). The call graphs for one endpoint
comprise between 1 and 25,000 spans at tree depths between
2 to 22 (Fig. 3b) and encompass widths between 1–5,000.
Uber, similarly, operates nearly 4,000 microservices, and a
single request trace can have up to more than 11,000 spans
nested 40 levels deep [88]. Existing tracing tools focus on
providing the operator with a single, specific trace [31, 48],
such as to identify an edge-case in Jaeger [86], or analyzing
the path of a single request [48]. How to properly aggregate
thousands, or even millions, of distributed traces to gather
insights is a nascent and understudied area [88].
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# Load distributed trace data

model = LatenSeer(data="s3://trace_bucket")

# UC1:Add hypothetical 30ms delay to service 'LBS'

scenario = model.apply('LBS'=lambda x:x+30)

# Get the changed end-to-end latency distribution

E2E = scenario.predict()

# UC2:Determine slack of 'LBS' service

LBSslack = model.slack('LBS')

Figure 4: LatenSeer Example. Estimate latency distribution if
load balancing services are migrated to another data center with
30ms extra delay.

3 Design

LatenSeer is an offline tool for conducting latency estima-
tion from distributed traces. This tool permits the system
operators to infer how end-to-end latency would be affected
when the latencies of specific services are changed. In this
section, we describe how LatenSeer overcomes the aforemen-
tioned challenges to derive a causal model of steady-state
latency from historic distributed trace data of the system.
Interface. Fig. 4 shows LatenSeer in action, estimating end-
user latency distributions under the assumption that load-
balancing services have been migrated to a distant data cen-
ter (UC1). The operator first obtains a baseline model of laten-
cies based on trace data. As input, the operator poses an inter-
ventional query to the model by defining a subset of services
to move (e.g., ‘LBS’), and the delay incurred (or reduced) from
the movement (e.g., a normal distribution centered on 30ms)
triggering the latency propagation via model.apply which
returns a latency-modified model, obtaining a predicted la-
tency distribution as output (via scenario.predict). Sep-
arately, the operator also determines the available latency
budget for the LBS service through a model.slack call,
which returns CDFs of latency slacks for all services (UC2).
The latency distributions in LatenSeer can be further strati-
fied by arbitrary groups (e.g., to assess latency impacts on
customers in certain regions)—we focus on a single group
for the clarity of presentation.
Key properties. To estimate end-to-end latency under po-
tential alterations in any component services, LatenSeer con-
structs a model that fulfills the following properties: (1) it
delineates the causal dependencies between microservices.
(2) it recognizes the range of request routes within the sys-
tem, accounting for the different paths a request might take
and the specific services it might encounter. (3) it maintains
the latency distributions of interactions (e.g., RPC or REST)
between each pair of communicating services.

3.1 Modeling latency with invocation graph

We begin by elucidating the principles behind latency
calculation using a single trace as an illustrative example.
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Figure 5: Child service latency may affect parent service.

The underlying concept is simple: the latency of a parent
service can be deduced from the latencies of its child ser-
vices. For example, Fig. 5 illustrates a trace consisting of a
parent service𝐴 and six child services (𝐵-𝐺), where 𝐵, 𝐸, and
𝐺 are on the latency-critical path. We define the following
functions on a particular trace: L(𝑥) the latency of service
𝑥 , and L(N) which accounts for the network latency or
other processing time on the latency-critical path. For in-
stance, it includes the duration between 𝐵’s finish time and
𝐸’s start time. Consequently, the latency of the span 𝐴 can
be expressed as L(𝐴) = L(𝐵) + L(𝐸) + L(𝐺) + L(N).
Now we discuss how latency changes on different child

services impact the latency of the parent service. Since ser-
vices 𝐵, 𝐸, and 𝐺 are on the latency-critical path, any delay
in these services will increase the latency of 𝐴. However, the
latency of𝐴 can also be affected by other services that are off
the latency-critical path, such as𝐶 , 𝐷 , and 𝐹 in this example.
We summarize four scenarios of latency change on a service
and their impacts3:
(1) An increase in the latency of a child on the latency-critical

path invariably leads to an increase in the parent latency
(2) A decrease in the latency of a child on the latency-critical

path can result in unchanged or reduced parent latency,
potentially altering the latency-critical path itself.

(3) When a child off the latency-critical path experiences
increased latency, the parent latency might remain the
same or increase, contingent upon changes to the latency-
critical path.

(4) A decrease in the latency of a child off the latency-critical
path leaves the parent latency unaffected.

Fig. 5 provides two examples demonstrating cases (1) and (3)
respectively.

As previously discussed, the latency-critical path exhibits
dynamism due to latency changes in different services. To as-
sess the impact of these changes on the latency of a parent ser-
vice, we construct an invocation graph for the child services.
This graph captures the sequential execution order of the
child services within a specific trace. In the invocation graph,
an edge E(𝑥,𝑦) represents service 𝑦 finishes before service
𝑥 happens. Node start, end, and sync are virtual nodes that
denote the starting, finishing, and synchronization points, re-
spectively. For example, node𝐺 will not start until both nodes
𝐸 and 𝐹 have finished. Fig. 6 shows a comparison between a

3We can effectively calculate the latency changes on multiple services. For
ease of presentation, we only show latency change on one service.
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Figure 6: From service dependency tree to invocation graph.

standard service dependency tree and an invocation graph
derived from the same trace (Fig. 5). Invocation graphs rep-
resents child relationships with finer granularity, a detail not
captured by service dependency trees. Moreover, each node
is endowed with a latency value corresponding to its service.
The latency of the parent service can be expressed asL(𝐴) =
𝑚𝑎𝑥 (L(𝐵),L(𝐶)+L(𝐷))+𝑚𝑎𝑥 (L(𝐸),L(𝐹 ))+L(𝐺). Given
this formulation, any alterations in a child service’s latency
allow for a direct computation of the resulting impact on the
parent service’s latency.
We now describe how the conventional service depen-

dency tree can be converted to an invocation graph. We use
serial and parallel to describe the relationship between any
two spans. Consider, for example, spans 𝐵 and 𝐸 depicted in
Fig. 5, we define the succession time as the difference between
the starting time of 𝐸 and the finishing time of 𝐵. Given that
𝐵 starts before 𝐸 from the vantage point of the parent ob-
server, we say that 𝐵 happens before 𝐸. If the succession time
is positive, we declare the two spans to be serial. Conversely,
a negative succession time, such as the overlapping time
frames of 𝐸 and 𝐹 , indicates a parallel relationship between
two spans.
The initial step involves identifying sync points, which

serve to demarcate nodes into chronological groups. Each
group is characterized such that services from a preceding
group must complete their execution before the services in
the succeeding group initiate. To establish these groups, we
construct a graph G𝑝 comprising child nodes and connect
nodes that are in parallel relationships. Subsequently, we
identify the connected components in the graph. Illustrating
with the child nodes (𝐵-𝐺) in Fig. 6, we can construct a graph
G𝑝 consisting of nodes 𝐵, 𝐶 , 𝐷 , 𝐸, 𝐹 , and 𝐺 , interconnected
through edges 𝐵-𝐶 , 𝐵-𝐷 , and 𝐸-𝐹 . Consequently, the con-
nected components are {𝐵,𝐶 , 𝐷}, {𝐸, 𝐹 }, and {𝐺 }. To complete
this step, we arrange these groups chronologically based on
the earliest start time among the nodes within each group.

The next step is to identify the causal orders among nodes
within each group. Within each group, we establish con-
nection between pairs of child nodes that are in serial rela-
tionship, forming a graph denoted as G𝑠 . In this graph, the
maximal cliques, or independent sets in graph theory par-
lance [28] are the nodes with serial relationships. And the
nodes within each maximal clique are then ordered by their
starting timestamps. For example, in the first group {𝐵,𝐶 , 𝐷},
maximal cliques are {𝐵} and {𝐶 , 𝐷}.
Drawing upon the aforementioned two steps, we can de-

termine the invocation order of the child nodes. When a
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Figure 7: Aggregate traces to L-tree.

latency change occurs in any given service, we can identify
the slowest path within the invocation graph, thus determin-
ing the overall latency of the parent service.

3.2 Aggregating traces with L-tree

We have presented the foundational principles of latency
modeling. In this section, we detail the construction of a
latency-endowed service dependency tree, referred to as
the L-tree, which aims to refine aggregate-level latency
calculations.
The construction of the L-tree is a top-down process by

two main steps. Firstly, we iterate through traces to establish
set nodes between parent spans and their direct children,
merging identical spans where necessary. This forms an ini-
tial L-tree structured by set nodes, albeit without invocation
graphs. Secondly, we traverse this preliminary tree to con-
struct invocation graphs at each set node, drawing upon
stored latency profiles. This produces a detailed L-tree. The
subsequent parts of this section will delve deeper into each
stage of this construction process.
Set node. The set node functions to effectively cluster to-
gether traces that exhibit similar invocation graphs. Each
regular node in the L-tree therefore denotes a span in the
original traces. When multiple traces include the same span,
the corresponding node in the L-tree represents aggregate
information of that particular span across the traces of the
same call path. Each regular node records how many traces
had the span to which it corresponds. A set node connects
a regular node with a collection of regular child nodes and
indicates an identical set of child nodes—the same set of
spans4. We iteratively input traces, and merge the new input
trace into L-tree; if a new set of child spans occur, we create
a new set node. Moreover, each set node remains a record
of the number of traces it encompasses, thereby providing
insights into the different branch ratios present in the L-tree.
For instance, Trace 1 and Trace 2 in Fig. 7 have same parent
span𝐴, but different sets of child spans {𝐵,𝐶} and {𝐵, 𝐷}. The
right diagram in Fig. 7 shows a L-tree for these two traces,
where two set nodes are created to connect the parent node
𝐴 and two different sets of child nodes.

Set nodes can cluster traces that exhibit similar invocation
graphs, which effectively retain the diverse characteristics
of calling relationships, thereby enhancing the modeling

4A set node effectively represents a hyperedge in a tree-based hypergraph.
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of latency distribution. In constructing the tree from the
top down, traces sharing the same set of child RPC calls
from a single parent call are clustered at each level. This ap-
proach strikes a balance between coarse aggregation (group-
ing all spans without differentiation) and fine-grained aggre-
gation (grouping traces only if they share identical invoca-
tion graphs).
Joint latency profiling. Traditional service dependency
modeling methods only store latency for each node indepen-
dently [33, 49], which misses the finer-granular causalities
between child services. L-tree maintains latency profiles
differently, by jointly considering the latencies of sibling
nodes. When forming a tree from a single trace and extend-
ing it to multiple traces, the latency data associated with
each node is profiled as a distribution, rather than a single
value. The set node manages the latency profiles of its child
nodes. Besides maintaining the latency distribution for each
child node, we also profile the succession time distribution
between pairwise sibling nodes, which is crucial to construct
an invocation graph for the sibling nodes.
Constructing invocation graphs in L-tree. Finally, we
describe the construction of invocation graph in L-tree. This
process resembles the one described in §3.1, but with a key
modification: we use the median of the succession time distri-
bution between two sibling nodes as a threshold to determine
their serial and parallel relationships. We hypothesize that
service invocations that occur in series should consistently
have positive succession time between them, whereas paral-
lel spans may show negative succession time in some traces.
Unfortunately, in production settings, the measurements are
not always clear-cut, as shown in Fig. 8, due to clock skew
and other instrumentation artifacts. The adoption of the me-
dian value as the classification threshold serves to mitigate
these challenges, promoting a more accurate delineation of
serial and parallel relationships.
This concludes our construction of L-tree, where each

regular node links to one or more set nodes indicating differ-
ent call paths. Each set node maintains an invocation graph
between the child nodes of the set node’s parent node. Conse-
quently, L-tree not only maintains similar call paths across
different tree branches but also captures the sequential exe-
cution order of child services.

3.3 End-to-end latency estimation

LatenSeer estimates the end-to-end request time by com-
bining the latency distributions in L-tree, propagating them
bottom-up from leaves to the root. If an operator thus mod-
ifies the latency of specific nodes within the L-tree that
corresponding to the services they tend to change, LatenSeer
will infer the latency impact from these changes through the
modified latency distribution of the root node. For example,

(a) Known serial siblings. (b) Known parallel siblings.

Figure 8: Succession time CDF for production services at

Twitter over a 24-hour period.

service 𝐵 is delayed by Δ𝐵 in Fig. 7, LatenSeer propagates the
increased latency Δ𝐵 , calculates the changed latency Δ𝐴 for
service 𝐴, and outputs 𝐴’s new latency distribution L(𝐴)′.
With the collection of traces, LatenSeer models node la-

tency as probability distributions. Formally, for serial nodes
with latency distributions represented as random variables
𝑋1,... 𝑋𝑘 , we define Add operator to estimate their combined
distribution as: P(𝑍 = 𝑧) = ∑

P(𝑋1 = 𝑥1, ..., 𝑋𝑘 = 𝑥𝑘 ), where
𝑧 =

∑𝑘
𝑖=1 𝑥𝑖 . On the other hand, we define Max operator

to estimate their combined latency: P(𝑍 ≤ 𝑧) = P(𝑋1 ≤
𝑧, ..., 𝑋𝑘 ≤ 𝑧).
Node latency estimation. We estimate the latency distri-
bution of node 𝑣 through its set nodes and corresponding
invocations graphs of their child nodes. Suppose that a set
node 𝑠 connects an invocation graph G containing𝑚 sync
points. Assume there are 𝑝 𝑗 paths between two sync points
and 𝑛 𝑗 nodes on 𝑗-th path. We use 𝑃𝑖𝑗 to denote the set of
nodes on 𝑗-th path between (𝑖 − 1)th and 𝑖th sync points.
Then the combined latency ℓ𝑖 of nodes between (𝑖 − 1)th and
𝑖th sync points can be calculated as:

ℓ𝑖 = Max(Add(𝑃𝑖1), ...,Add(𝑃𝑖𝑝1 ))

Finally, the latency of set node 𝑠 is calculated as:

L(𝑠) = Add(ℓ1, ..., ℓ𝑚)

Suppose the latency distribution of the node 𝑣 depends on
𝑘 set nodes, denoted as 𝑠𝑖 . The latencyL(𝑣) can be expressed
as a weighted sum of the latencies of these set nodes, rep-
resented as

∑𝑘
𝑖=1𝑤𝑖L(𝑠𝑖 ), where𝑤𝑖 ∈ [0, 1] denotes relative

weights with
∑𝑘

𝑖=1𝑤𝑖 = 1. The relative weight is determined
based on the number of traces recorded by each set node.
End-to-end latency estimation. LatenSeer combines the
estimated latency distributions of all nodes in the L-tree to
produce one estimated distribution of end-to-end latency.We
first inject the changed latency (Δ ∈ R) to the target nodes
that correspond to the services for which the operator wants
to intervene. (In causal modeling, this change emulates a do-
operator [59, 60]). The algorithm works bottom-up, taking as
input the L-tree, and the set of hypothetical services to be al-
tered with their corresponding latency (Alg. 1). The changes
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Algorithm 1 Latency Estimation
Require: L-tree𝐺 ; a “what-if” scenario 𝑆
Ensure: Estimated end-to-end latency distribution
1: function Predict(𝐺 , 𝑆)
2: 𝑟 ← root node of𝐺
3: 𝐴← Apply(𝑟 , 𝑆) ⊲ Nodes affected by scenario 𝑆
4: 𝑑 ← greatest depth among nodes in 𝐴

5: while 𝑑 > 0 do
6: Nodes← 𝐴[𝑑 ]
7: for each regular parent 𝑝 of a node in Nodes do
8: ℓ , affected← LatencyPropagation(𝑝 , 𝐴)
9: if affected then

10: update distribution of 𝑝 with ℓ

11: 𝐴[𝑝 .depth].insert(𝑝)
12: 𝑑 ← 𝑑 − 1
13: return updated distribution of root node 𝑟

trigger bottom-up latency propagation within the L-tree
from the affected nodes toward the root. If a node displays
variable latency, we recalibrate its parent node’s latency us-
ing the Add andMax operators, following the structure of
the invocation graph. Importantly, any modification in the
latency of a parent node prompts a subsequent recalculation
of its own parent, continuing this chain recursively up to the
root node.

3.4 Making LatenSeer practical for

production workloads

LatenSeer’s design aims to solve latency estimation for
real-world usages at scale. We discuss some design choices
and optimizations that make LatenSeer practical, especially
from our experiences when dealing with massive trace data
at Twitter.
(1) Handling clock skew and miss data. To derive the
serial and parallel relationships between nodes, we must
compare the timestamps on two spans. These spans often
represent RPCs that are likely emanating from different ma-
chines, which poses a potential issue as the clocks across
these machines are not perfectly synchronized, thus could
introduce inaccuracies in our comparisons. We mitigate this
issue by using client-side timestamps, which record the times
on the same machine where the RPC calls are invoked. In
other words, the start and finish times of child spans that
we use are the timestamps recorded from a machine where
the parent span locates. In this manner, the duration of a
child span consists of both its processing time and network
latency. Handling missing or erroneous data in tracing sys-
tems is an open problem. We tackle this by truncating traces
at the initial missing span connection. Comparisons on Al-
ibaba traces revealed minimal latency differences between
complete and truncated traces.
(2) Set nodes for clustering traces. As mentioned in §3.2,
we introduce the concept of set node to cluster together traces
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Figure 9: Set node justification via Twitter traces.

that exhibit similar invocation. We now provide a more de-
tailed explanation behind this design decision. Given the
diverse call patterns in large-scale systems, clustering traces
based on identical dependency graphs is often impractical.
For instance, a service invoking four cache-get operations
and a service executing five cache-get operations would
fall into separate clusters when using an identical cluster-
ing approach. Fig. 9a illustrates the frequency of identical
dependency graphs and set nodes of a root node (a front-end
service) in Twitter, derived from examining 190,087 traces
with the same front-end API. The rank in Fig. 9a refers to the
ranking of identical dependency graphs or set nodes based
on their frequency. In this context, we focus exclusively on
the first depth of the full graph: the root node and its im-
mediate child nodes. Recall that the identical dependency
graphs are those where child nodes exhibit precisely the
same sequence of invocations, and the set node groups the
traces which have the same set of child nodes. Fig. 9a reveals
that the number of different identical dependency graphs
is twice that of set nodes. This set node concept, therefore,
offers a more practical and effective way of grouping traces
for latency modeling in complex systems.

The adoption of set nodes is substantiated by their ability
to identify similar call patterns in traces sharing the same
set of child RPC calls. Conversely, different set nodes usually
correspond to varying latency distributions, a consequence
of the unique call paths each trace navigates, as exemplified
in Fig. 9b. Further supporting this approach, we’ve observed
that the top two ranks of identical service dependency graphs
exhibit the same latency distributions and belong to the same
set node (the finding is not shown in the paper due to space
constraints.). This consistency lends further credibility to
the concept of the set node, underscoring its practicality and
relevance in understanding and modeling system latencies.
(3) Pre-merging parallel spans. The traces in large-scale
applications tend to be complex, with a typical request touch-
ing tens to thousands of individual microservices, producing
service dependency trees that are up to 20 levels deep. To
reduce the complexity of computation, we presume some
sibling spans are parallel and coalesce these spans into the
same (regular) node. According to observations of a large
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number of Twitter traces, we found most simultaneous RPCs
to cache and storage are parallel. For example, hundreds of
cache-get happening simultaneously often have a parallel
relationship. Pre-merging such spans significantly reduce
the L-tree complexity.
(4) Building LatenSeer trees in parallel. LatenSeer must
be efficient enough to process an enormous volume of traces
for large-scale applications. To facilitate this, we parallelize
the tree-building process. The traces are initially partitioned
based on their top-level API endpoint, as identical API calls
tend to exhibit similar calling patterns. Subsequently, traces
within the same API endpoint are evenly distributed into the
same bucket, and a subtree is constructed for each batch of
traces. Finally, subtrees for traces with the same top-level API
endpoint are merged. This merging process commences from
the top and progresses downwards.When nodes are identical,
they are merged along with their latency profiles. If nodes
are distinct, the unique node is simply incorporated. This
methodology ensures that the final tree accurately represents
the diverse and complex calling patterns inherent in the
large volume of trace data. We implemented L-Tree using a
distributed data-parallel processing framework in Twitter.
The framework can produce the results daily or weekly based
on requirements.

4 Evaluation

In this section, we evaluate LatenSeer to answer the fol-
lowing questions.
• Can LatenSeer provide accurate end-to-end latency esti-
mation results?
• How well is LatenSeer estimating the end-to-end latency
with real-world use cases?
• How is LatenSeer compared with the state-of-the-art?
• How effectively can LatenSeer handle large-scale traces?

4.1 Experimental Setup

Prototype system. We implement LatenSeer5 in ≈ 3,000
lines of Python3 code and test it with DeathStarBench mi-
croservice benchmark (DSB) [26] on Social Network applica-
tion, which consists of 31 unique microservices. We leverage
DSB’s default workload generator to produce client requests.
Furthermore, we fulfill all the missing function-level instru-
mentation in DSB.
We set up experiments on CloudLab [15] under two de-

ployment topologies using three different physical sites, as
shown in Fig. 10. We deploy the benchmark on 6 machines
at the Utah site, 6 machines at the Wisconsin site, and 1 ma-
chine at the Clemson site. In both scenarios, we run the work-
load generator at the Clemson site on a node type "c6320"

5LatenSeer is open-sourced at https://github.com/yazhuo/LatenSeer, and
the Twitter traces will be released upon legal approval.
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Figure 10: Prototype experiment setup using three Cloudlab

sites. The left shows the single-site deployment where all microser-
vices run in the Utah cluster; the right shows multi-site deployment
where some microservices run in the Wisconsin cluster.

(Haswell 28-core with 256 GB RAM and 10 Gbps network).
Microservices in Utah and Wisconsin ran on node types
"xl170" (Broadwell 10-core with 64 GB RAM and 25 Gbps
network) and "c220g5" (Skylake 20-core with 192 GB RAM
and 10 Gbps network), respectively. RPC latencies within
a single site are < 1ms, while latencies between Utah and
Wisconsin are in the range 38–42ms.
Methods. Both the traces and our measurements report the
end-to-end request processing latency at the API gateway.
We call the latency distribution that LatenSeer outputs for
a specific service change scenario the prediction. We term a
measured latency distribution for a given scenario ground

truth and use it to quantify the accuracy of the corresponding
prediction. When we exercise LatenSeer to make a prediction
without perturbing the model latencies (typically to validate
the model itself), we call the output latency distribution the
null prediction.
Except for the sensitivity experiment that varies the re-

quest mix, the workload generator sends requests to three
endpoints using the default read-dominated ratio of 1:3:6,
with one compose-post request for every three calls to
read-user-timeline and six read-home-timeline re-
quests. We use the same request rate of 500 RPS in all cases.
Each experiment proceeds as follows. We first run our

workload for 10 minutes in the baseline configuration to
collect the traces for building the model in LatenSeer. Next,
we inject an estimated latency delta (specifically, the average
value from a ping test) into the model at the appropriate
microservices and invoked scenario.predict to generate
a latency prediction. We then run the workload again on the
changed deployment for 10 minutes in order to measure the
ground truth latency distribution. We compare prediction
results with the ground truth. All traces are collected using
Jaeger at a 10% sampling rate.
Metrics. For a prediction latency CDF 𝐹pred, and a ground
truth latency CDF 𝐹true, we report prediction accuracy using
two metrics:
(1) The D-statistic in the K-S (Kolmogorov-Smirnov) test,

which is the difference between two CDF curves at the

https://github.com/yazhuo/LatenSeer
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Figure 11: LatenSeer compared with state-of-the-art.

point of maximum divergence. It is defined as
𝐷 = max𝑥

��𝐹pred (𝑥) − 𝐹true (𝑥)�� ∈ [0, 1].
(2) The maximum and average of the relative latency error at

each percentile. It is defined as 𝐸 =

(
(𝐹 −1pred (𝑦) − 𝐹

−1
true (𝑦)

)
/𝐹 −1true (𝑦) ∈ R, where 𝑦 ∈ [0, 1]. A negative value implies
that the prediction is lower than the ground truth; a
positive value means that the prediction is higher latency
than the ground truth. We focus on the mean and max
relative error, denoted as 𝐸avg and 𝐸max.
The K-S statistic is a standard metric for comparing two

CDFs, but because it captures only the most extreme point of
misprediction, it can be large even when the two CDFs are
mostly similar. In practice, it is also useful to know how well
LatenSeer predicted latency across the entire distribution
relative to the absolute values of the ground truth. Therefore
we also report the relative error metric.
Traces. To evaluate scalability of LatenSeer in handling
production-scale traces, we use two production traces from
Twitter and Alibaba. The Twitter traces consist of up to
25,000 spans, with a depth spanning from 2 to 18 hops. The
Alibaba traces possess up to 6,625 spans with 1 to 14 hops.

For latency estimation experiments, we operate our proto-
type system and gather traces using Jaeger [32] as part of the
DSB deployment. The collected DSB trace set encompasses
a variable number of spans, fluctuating between 5 and 33,
with the maximum depth ranging from 2 to 6 RPC hops.
Baseline. We compare LatenSeer with WebPerf [33], the
state-of-the-art latency estimation work. We reimplement
WebPerf’s model because it’s not open-sourced, and tame
WebPerf’s model to fit our scenarios. WebPerf is based on
customized low-level instrumentation for the extraction of
causal dependency graphs, which we find not practical in
today’s tracing framework usages in most production en-
vironments. We resort to examining the DSB codebase to
discern these dependencies and construct the corresponding
graph to meet WebPerf’s requirements.

4.2 Estimation Accuracy

Through code reading for DSB benchmark, we derive an
true causal dependency graph. This graph is then compared
with the L-tree generated by LatenSeer. Our analysis shows
that LatenSeer accurately replicated the same dependency
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Figure 12: Null prediction on production traces.

relationships present in the true graph. Fig. 11a presents a
section of the L-tree at its highest complexity, which also
aligns with the trace depicted in Fig. 2.
We then conduct a null prediction experiment to validate

the soundness of our model. In this setup, we inject a "null"
latency into the leaf nodes, triggering the latency propaga-
tion procedure to traverse all the nodes in the tree. We expect
that the prediction aligns closely with the ground truth. As
shown in Fig. 11b, LatenSeer precisely calculates the end-
to-end latency distribution, while WebPerf generates larger
errors with 𝐷 = 15%, 𝐸𝑚𝑎𝑥 = 8.8% and 𝐸𝑎𝑣𝑔 = −2.0%. The
superior accuracy of LatenSeer over WebPerf can be attrib-
uted to the assumptions made by each tool regarding latency.
WebPerf operates under the assumption that latencies on
different components are independent of one another, while
LatenSeer takes a more holistic approach by profiling the
latencies jointly for sibling nodes.
Since the ground truth of causal dependency graphs for

the production traces is not available, we limit our exami-
nation to whether the model accurately predicts the latency
distribution of the input traces through null prediction exper-
iments on two production traces. The results in Fig. 12 show
that predictions align closely with the ground truth for both
Alibaba traces (Fig. 12a) and Twitter traces (Fig. 12b), con-
firming that the internal service relationships are modeled
faithfully.

4.3 Case Studies

We evaluate how well LatenSeer models end-to-end re-
quest latency in a microservices environment using DSB. To
examine the key properties, we focus on the two use cases:
service placement (UC1) and latency slack (UC2).
4.3.1 Service placement (UC1)We study the accuracy of la-
tency predictions under real, albeit controlled, conditions by
comparing the predicted and measured latency distribution
following wide-area service migration. In order to experi-
mentally exercise as much of LatenSeer’s model as possible,
we use three API endpoints: read-home-timeline, read-
user-timeline, and compose-post, and select three mi-
croservices formigration: user-timeline-service, user-
service, and media-service.
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remote.

• The read-home-timeline endpoint does not interact
with any of the chosen services, hence unaffected by their
migration.
• The read-user-timeline endpoint only interacts with
user-timeline-service.
• The compose-post endpoint interacts with all three ser-
vices, and invokes them both in parallel (user-service
and media-service) and serially (user-service and
user-timeline-service).

In the following experiments, we explore how accurately
LatenSeer predicts end-to-end latency when selected mi-
croservices are migrated over the wide area network from
one CloudLab site to another. We set up the experiments as
described in §4.1, generating the model from the single-site
deployment, measuring ground truth in the multi-site de-
ployment, and using the average ping time measurement of
38.7 ms between theWisconsin and Utah sites as the injected
latency delta.
Migration that increases latency. Fig. 13 shows the pre-
diction vs ground truth CDFs for experiments with two dif-
ferent pairs of services, each graph showing the top-level
request latency distribution measured at the single-site (dot-
ted line), the ground truth measured with the multi-site de-
ployment (solid line), the prediction from WebPerf (dash-
dot line), and the prediction from LatenSeer (dashed line).
For the left-hand graph, Fig. 13a, the user-service and
media-service were moved from Utah to the Wisconsin
site. Only one endpoint, compose-post, should be affected
by this migration. This endpoint comprises 10% of the de-
fault workloadmix, and the twomicroservices have a parallel
relationship within requests for that endpoint.
Fig. 13b shows the prediction when user-timeline-

service and user-serviceweremigrated. Thesemicroser-
vices affect not only compose-post, with a serial relation-
ship therein, but also impact read-user-timeline, which
is called 30% of the time. Note that in both cases, latency is
extended by different amounts depending on the number of
cross-site calls introduced by the service migration.

LatenSeer shows highly accurate predictions for both sce-
narios, as summarized in Table 2. Even though the K-S 𝐷

statistic for LatenSeer for the right-hand graph is almost 5%,
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Figure 14: Prediction accuracy for migrating from remote to

local.

Table 2: Results of service placement experiments.

Experiments Model 𝐷(%) 𝐸max(%) 𝐸avg(%)

Parallel services LatenSeer 1.31 2.30 -0.21
-> remote (Fig. 13a) WebPerf 18.60 27.00 9.30
Serial services LatenSeer 4.68 11.50 -0.11
-> remote (Fig. 13b) WebPerf 19.04 28.00 -1.20
Parallel services LatenSeer 1.45 1.10 0.22
-> local (Fig. 14a) WebPerf 10.50 10.70 0.60
Serial services LatenSeer 5.35 8.00 1.50
-> local (Fig. 14b) WebPerf 9.50 8.90 -0.80

the average relative error is extremely low at -0.11%. In com-
parison, WebPerf shows much lower accuracy with 19% and
-1.22% for 𝐷 statistic and average relative error, respectively.
Note how the shape of the CDF changes when some services
are placed remotely: the jumps reflect the workload mix and
how the three request types are affected (or not) by the migra-
tion. Thus Fig. 13a has just one jump at around the 90th per-
centile (because 10% of requests are compose-post), while
Fig. 13b shows two jumps for read-user-timeline and
compose-post, both of which touch the migrated services.
The change in the shape of the latency distribution high-
lights that one cannot simply estimate the latency impact
of service migration by offsetting the baseline distribution
with a constant value and emphasizes the importance of
LatenSeer’s modeling techniques.
Migration that decreases latency. This experiment in-
verts the previous: we build the model from traces collected
using the multi-site deployment and predict the single-site
end-to-end latency distribution by injecting the negative
delay value (-38.7ms) to the target nodes. Fig. 14 shows the
results; the left-side plot delineates the effects on moving
the parallel services (user-service and media-service),
while the right-side plot shows the results of moving serial
services (user-service and user-timeline-service).
Once again, the prediction accuracy is very good, with av-
erage relative errors for both experiments below 2% and
D-statistic less than 5.35%. As a comparison, WebPerf shows
errors of more than 9.5%.
4.3.2 Slack Analysis (UC2) LatenSeer can be used to infer
the latency budget of specific microservices: it traverses
the L-tree top-down, from the root node to all leaves, to
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Figure 15: Latency slack analysis.

compute the available latency slack for services. Fig. 15a
shows four services with latency slack under our experimen-
tal workload: unique-id-service, user-service, and
media-service have similar latency slack distributions —
three of the services exhibited at least 2.3 ms slack, while the
latency slack for user-mention-service is much smaller.
Other services, not shown, had zero latency slack, meaning
they were on the latency-critical path, and any increase in
latency of these services would affect end-to-end latency.
We evaluate the accuracy of the latency slack identified

by LatenSeer at individual services, using the slack to sys-
tematically perturb the latency distributions of services on
and off the latency-critical path. For these experiments, we
use the single-site deployment configuration and perturb
latency in a controlled fashion by using the tc utility to
induce delay at the network level of the Docker container of
the target service. The same delay value is injected into the
target service in LatenSeer’s model, which then updates the
latency slack at each node in a top-down fashion.

We evaluate the accuracy of slack estimates in each of the
three ways that injected latency can perturb the L-tree: (i)
when the injected latency is off the latency-critical path; (ii)
when the injected latency extends or reduces the duration of
the latency-critical path; and (iii) when the injected latency
changes the latency-critical path itself.

Off-CP : For the first prediction experiment, we inject 2 ms
of latency – well within the slack time – at user-service
that is off the latency-critical path. Fig. 15b “Off CP” indeed
confirms this, with the prediction almost unchanged from
ground truth (𝐷 = 4.26%, 𝐸𝑚𝑎𝑥 = −1.0%, 𝐸𝑎𝑣𝑔 = −0.65%).

On-CP : We then inject 5 ms of latency to user-timeline
service that is inferred to be on the latency-critical path
(zero latency slack). The new dominating latency distribution
bubbles up through the levels of the L-tree to the root node.
Fig. 15b “On CP” shows the results with 𝐷 = 2.01%, 𝐸𝑚𝑎𝑥 =

0.7%, 𝐸𝑎𝑣𝑔 = −0.11%.
Changing-CP : For the third injection experiment, we

change the critical path by again adding latency to user-

service. In this case, however, the injected latency of 5 ms
exceeds the available slack, causing the change in end-to-end
latency. We show the results in Fig. 15b “Changing CP”. Note

Table 3: Results of sensitivity analysis on the injected latency

for the experiment shown in Fig. 13a.

Diff from ping time(%) 𝐷(%) 𝐸𝑚𝑎𝑥 (%) 𝐸𝑎𝑣𝑔(%)

-10 9.5 2.3 -0.96
-5 7.8 2.3 -0.58
-2 3.5 2.3 -0.36
-1 1.8 2.3 -0.29
+1 2.5 2.3 -0.01
+2 4.6 2.3 -0.06
+5 8.0 4.4 0.16
+10 9.6 8.6 5.40

that this experiment injects the same magnitude of latency
change as the previous one (albeit into different microser-
vices), but the resulting distribution is markedly different,
and moreover, LatenSeer successfully predicts this difference
(𝐷 = 0.02%, 𝐸𝑚𝑎𝑥 = 0.3%, 𝐸𝑎𝑣𝑔 = 0.1%).

4.4 Sensitivity Analysis

We conduct a sensitivity analysis on injected latency and
on changes to the workload request mix, showing how the
metrics degrade as the model diverges further from condi-
tions experienced in the prediction environment.
Injected latency. In the service migration experiments, we
use the average ping time between two sites to approximate
the additional latency introduced by the new placement. This
is obviously a low-fidelity value – single packet timings at the
network layer are not the same as timings of RPC over TCP,
across a WAN link, with varying payload size. However, we
also claim that this is a realistic starting point in an industry
setting, offering a simple-to-obtain, "good enough" value for
many real-world scenarios that require only an approximate
answer to a what-if question.
To better characterize the impact of such inaccuracy, we

repeat the first service placement experiment with various la-
tency injections as fractions of the ping value. Table 3 shows
the results: the K-S statistic, 𝐷 , in particular, reports increas-
ingly large divergences between prediction and ground truth,
although overall relative error does not vary much from the
baseline we use in the experiments reported above.
Workload mix. LatenSeer predicts latency using the his-
torical data. In the real world, it is not unusual for the mix of
request types to change over time, and sowe look here at how
varying the relative request proportions affects the quality
of the prediction. In this experiment, we first collect traces
in the single-site scenario, which comprises a 50:50 mixture
of request types read-home-timeline and read-user-
timeline. Then, we migrate user-timeline-service
to the multi-site scenario and collect ground truth using
90:10 and 20:80 mixtures.
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load distributions.

Fig. 16 shows the model’s accurate predictions up to ap-
proximately the 90th percentile, but results degrade at the
tail. This decline is attributed to a higher cache hit ratio dur-
ing skewed workloads, a detail not covered by LatenSeer’s
modeling, hence the anticipated inaccuracy.
Threshold for succession time distribution. As discussed
in §3.2, we choose the median value from the succession time
CDF as our classification for all experiments. Here we repeat
the first service placement experiment, adjusting the clas-
sification threshold between 1% and 99% to extract causal
dependencies. Our results indicate same values for 𝐷 , 𝐸max,
and 𝐸avg across all classification thresholds. This consistency
can be attributed to the relatively low level of noise present
within the benchmark environment. However, it’s important
to recognize that this threshold may not be universally appli-
cable. It is recommended that the threshold be evaluated and
potentially adjusted to suit the unique conditions of different
production environments.
Varying trace sampling rate. As tracing systems only
capture a subset of requests, we evaluate the accuracy of pre-
diction with different sampling rates over 4 sets of migration
experiments. We randomly sample the traces that are used
to build the model in the previous experiments as sample

traces, then we use the sample traces to build the model and
conduct prediction. Unless otherwise stated, we repeat this
experiment 20 times for each sampling rate.
The box plots in Fig. 17 show the error metrics (𝐷 , 𝐸max,

and 𝐸avg) between prediction from sample traces and ground
truth for different sample rates. Overall, the 𝐷 statistic is
small, even for low sampling rates. Sampling with R = 0.001
results in E2E latency prediction with 𝐷 statistic of between
0.05 and 0.14. 𝐸𝑚𝑎𝑥 and 𝐸𝑎𝑣𝑔 show more over-prediction
when the sampling rate is too low.

4.5 LatenSeer Performance

Building the LatenSeer model, or L-tree, is dependent on
the internal structure of the aggregated trace tree. In con-
trolled experiments, we have found that constructing the
LatenSeer from 30,000 DSB traces took approximately 11
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minutes. The number of spans in our DSB trace set ranged
from 5-33, and the depth extended from 2-6 RPC hops. How-
ever, this timing can significantly vary in real-world settings,
owing to the complexity of the traces involved.
For instance, the number of spans in our DSB trace set

ranged from 5-33, and the depth extended from 2-6 RPC hops.
This complexity is dwarfed when we consider Alibaba and
Twitter traces. Alibaba traces can contain up to 6,625 spans
with depths between 1-14 hops. In contrast, Twitter traces
can encompass up to 25,000 spans and depths ranging from
2-18 hops. Given these complexities, the time to build the L-
tree in real-world scenarios can be considerably longer. For
71,055 Alibaba traces, the model-building process requires
approximately 66 minutes. Similarly, for 2,618 traces from
Twitter, the construction process takes about an hour.

5 Conclusion

We present LatenSeer, a modeling framework for estimat-
ing end-to-end latency distributions in microservice-based
web applications. LatenSeer can accurately predict interven-
tional end-to-end latency by leveraging distributed tracing
data. We evaluated LatenSeer in two realistic scenarios: ser-
vice placement and latency slack analysis. Our evaluation
shows that LatenSeer achieves high precision accuracy with
an estimation error less than 5.35% (D-statistic), outperform-
ing the start-of-the-art that has more than 9.5% estimation
error. Moreover, our results on real-world production traces
show that LatenSeer is practical and scalable enough to sup-
port complexities in production environments.
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