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ABSTRACT
Web caches have long been effective at reducing latency and back-
end load by storing popular content close to users, exploiting the
temporal and spatial locality of human-driven access patterns. How-
ever, the rise of AI-generated traffic is challenging this assumption.
AI agents such as search crawlers and data scrapers issue large vol-
umes of diverse, low-referrer requests with minimal reuse, which
degrade cache effectiveness, interfere with human-relevant con-
tent, and increase pressure on backend systems. In this paper, we
argue that caching infrastructure must evolve to address this shift.
We analyze emerging AI traffic patterns and study their impact
on caching performance using a CDN prototype based on Wiki-
media’s architecture. Our results show that even modest amounts
of AI traffic lead to significant cache inefficiency. We envision a
workload-aware caching paradigm that serves human and AI traffic
through differentiated tiers and policies, preserving responsive-
ness for users while adapting to the diverse access patterns and
requirements of AI workloads.
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1 INTRODUCTION
Deployed across browsers, edge nodes, and content delivery net-
works (CDNs), web caches reduce latency and backend load by
storing frequently accessed content closer to users [28, 40, 63]. Tra-
ditional cache design assumes that traffic exhibits strong temporal
and spatial locality, an assumption that holds for human users, who
often revisit popular or semantically related pages. This behavior
results in skewed access distributions, where a small subset of con-
tent accounts for the majority of requests, making caching highly
effective [6, 61].

This assumption, however, is increasingly invalid in the face of
growing AI-generated web traffic. Automated bot traffic comprised
an estimated 51% of web traffic in 2024, up from 43% in 2021, due to
the rise of AI and Large Language Models (LLMs) [8, 30]. Cloudflare
reports that 30% of its traffic originates from non-human agents,
which includes HTTP request activities from user agents associated
with AI assistants, AI data scrapers, and AI search crawlers [12].
Akamai similarly notes that AI scraper traffic is growing rapidly,
already generating hundreds of millions of requests per day across
their network [21]. Unlike human behavior, AI agents and scrapers
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exhibit aggressive behavior including high-volume, low-referrer re-
quests, often in parallel and without regard for crawling norms [33,
49, 56]. Rather than focusing on popular pages, they frequently
access rarely visited or loosely related content across a site, often in
sequential, complete scans of the websites. For example, an AI assis-
tant generating a response may fetch images, documentation, and
knowledge articles across dozens of unrelated sources. While tra-
ditional web scrapers also exhibit sequential access patterns, their
volume was historically limited, typically affecting only smaller,
content-heavy websites [24, 46].

These shifts have real-world consequences. Traditional caching
strategies are not designed to absorb the high diversity and low-
reuse of traffic fromAI scrapers and agents. As a result, backend sys-
tems face increased cold-path pressure, leading to higher compute
and database load. Content providers such as Read the Docs have
reported excessive backend service bandwidth consumption by AI
scrapers — up to 73TB of HTML in a single month — resulting in
significant financial costs and degraded performance [27]. Similarly,
Wikimedia reports a 50% increase in backend service bandwidth us-
age from AI-driven scrapers. Although bots account for only 35% of
Wikimedia’s pageviews, they generate 65% of resource-consuming
traffic (i.e., requests that bypass CDN cache layers and hit the core
datacenters) [11, 56]. This reveals a fundamental limitation in to-
day’s caching infrastructure: it struggles to cope with increasingly
mixed workloads from human and AI traffic.

In response, site operators have adopted two broad strategies
to address AI traffic. Some treat AI bots as undesirable clients and
employ defensive techniques such as bot filtering, rate limiting,
robots.txt enforcement, and API access controls [9, 14, 48]. How-
ever, these approaches often fall short. Crawlers frequently rotate
IPs and use legitimate user-agent strings, rendering IP and agent-
based filters ineffective or overly aggressive, sometimes blocking
real users [17, 27]. Others, recognizing the utility of AI agents
in applications like search, summarization, and research, aim to
serve themmore effectively. For example, Cloudflare has introduced
usage-based pricing for large-scale crawlers, signaling a shift to-
ward usage accountability rather than outright blocking [49]. Yet
this permissive approach highlights a growing need to optimize
infrastructure for human and AI traffic, ensuring that human users
continue to receive fast, reliable responses while accommodating
the demands of automated agents.

In this paper, we argue that web caching systems should evolve
to actively prioritize human traffic. Caches should not only act as
passive stores optimized for popularity, but also become traffic-
aware systems that recognize and adapt to the source and behavior
of incoming requests. We analyze the behavior of both AI search
crawlers and data scrapers, and evaluate cache performance under
realistic workloads using a CDN prototype modeled after Wikime-
dia’s infrastructure. We show that even modest levels of AI traffic

https://doi.org/10.1145/3772052.3772255
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3772052.3772255


SoCC ’25, November 19–21, 2025, Online, USA Yazhuo Zhang, Jinqing Cai, Avani Wildani, and Ana Klimovic

System AI Traffic Behavior Impact Mitigation
Wikimedia [11, 56] bulk image scraping for model

training
50% surge in multimedia band-
width usage

• block crawlers traffic

SourceHut [2, 10, 44] LLM training crawler scraping
code repos

service instability and slow-
downs

• block crawlers traffic

Read the Docs [2, 27] AI crawlers download large files
hundreds of times daily

significant bandwidth increase
• IP-based rate limiting
• temporarily blocked all traffic from bots
• reconfigure CDN to better cache files

GNOME’s GitLab [2] burst of AI bot requests service instability and slow-
downs

• temporarily rate-limit on non-logged users
• block crawlers by Anubis [1]

KDE’s GitLab [2] aggressive scraping from AI
bots mimicking browsers

service instability and slow-
downs

• ban the specific Edge version used by bots

Fedora [2, 17, 39] AI scrapers recursively crawl
package mirrors

slowness for human users • block a bunch of subnets
• geo-block traffic from known bot sources

Diaspora [43] aggressive scraping without re-
specting robots.txt

downtime/slowness for human
users

• rate limit
• block crawlers traffic

Table 1: Examples of infrastructure disruptions caused by AI traffic.

can significantly degrade cache effectiveness, displacing human-
relevant content and increasing backend load. We envision a new
design paradigm where web caches first act as lightweight traf-
fic filters, preserving locality by shielding human-driven requests
from interference caused by high-volume, low-locality AI traffic.
Additionally, since AI and human traffic exhibit fundamentally dif-
ferent access patterns and reuse behaviors, caches should separate
their treatment, using distinct caching tiers or applying tailored
admission and eviction policies to better serve each workload.

2 IS WEB CACHING STILL EFFECTIVE?
To understand how AI workloads challenge existing caching strate-
gies, we begin by examining changes in web traffic composition and
their impact through real-world evidence (§2.1). We then analyze
the access patterns of two representative forms of AI traffic — AI
search crawlers and AI data scrapers (§2.2). Finally, we present a pro-
totype based on the Wikimedia CDN to to evaluate how AI-driven
traffic affects cache performance (§2.3).

2.1 Shift in Web Traffic Patterns and its Impact
Web traffic composition is undergoing a major shift, with a growing
share driven by AI systems rather than human users. Traditionally,
web workloads follow a power-law distribution (also known as
Zipfian), where a small fraction of objects receive the majority of
requests [3–5, 15, 25, 26, 28, 45, 47, 59, 59, 62]. However, the rapid
growth of AI-generated traffic is changing this landscape. AI-driven
web traffic refers to automated requests generated by tools that
support or train large-scale AI systems, including inference-serving
agents (e.g., search assistants) and data scrapers used for model
training [12, 18]. While bots have long existed on the web for tasks
like search engine optimization (SEO) indexing, uptime monitoring,
or price scraping, the recent surge of AI agents has introduced
new traffic behaviors and scale [12, 18, 21, 49]. Recent data from
Cloudflare indicates that over 30% of its global traffic now comes
from non-human sources, including AI-powered assistants, search

crawlers, and data scrapers [12]. Similarly, Dark Visitors, which
monitors thousands of websites across the internet, reports that
AI-related traffic rises from approximately 10% to 15% of total traffic
just between April and July 2025 [18].

To quantify how aggressively AI platforms crawl the web, Cloud-
flare introduced the crawl-to-refer ratio, a metric that compares
the number of HTML page requests made by a platform’s auto-
mated agents to the number of actual user visits referred from that
platform. A high crawl-to-refer ratio indicates that the platform
crawls many pages, but few are ever shown to users, suggesting
backend scraping activity rather than user-serving behavior. AI
companies such as Anthropic and OpenAI exhibit extremely high
ratios, 44, 800× and 1, 300×, respectively, indicating that the vast
majority of their crawled pages are never visited by users [49]. Sim-
ilarly, Dark Visitors shows that only 2.19% of links mentioned in AI
chat and search sessions are actually clicked by users [18]. This low
referral click rate underscores a growing asymmetry: AI platforms
aggressively retrieve content at scale, but only a small fraction is
surfaced to or engaged with by end users.

For web caches, this results in a surge of one-time accesses
to a wide range of unique pages over short time windows, lead-
ing to low hit rates and frequent evictions. Consequently, a large
volume of traffic is offloaded to backend infrastructure — higher
bandwidth usage, increased server compute demands, and costly
database lookups. Table 1 summarizes real-world incidents where
AI crawlers and scrapers have have caused service degradation and
outages. The impact has been severe: Wikimedia experienced a 50%
surge in multimedia bandwidth usage due to bulk image scraping,
SourceHut, GNOME, and KDE reported service slowdowns and
instability, Read the Docs noted significant bandwidth increases
from AI bots repeatedly downloading large files, and Fedora and
Diaspora suffered from heavy load and poor performance for hu-
man users [1, 2, 10, 11, 17, 27, 39, 43, 44, 56]. These disruptions
reflect the strain that AI traffic, particularly from LLM training and
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inference crawlers, can impose on infrastructure not designed for
such workloads.

To mitigate the impact of AI crawlers, many platforms have
resorted to defensive strategies such as blocking traffic, IP-based
rate limiting, geo-blocking, or filtering by user-agent. However,
these approaches often fall short. Crawlers frequently rotate IPs
and use legitimate user-agent strings, rendering IP and agent-based
filters ineffective or overly aggressive, sometimes blocking real
users [17, 27]. Defensive tactics alone are not a long-term solu-
tion. As AI traffic continue to scale, it is no longer an anomaly;
it’s becoming a dominant mode of access. In response, Cloudflare
introduced a pay-per-crawl model for AI bots [13], arguing that
the infrastructure costs of serving automated crawlers should be
compensated. At the same time, this shift calls for a deeper rethink-
ing of infrastructure design — not just how to restrict AI traffic, but
how to support it more effectively.

2.2 AI Traffic Patterns
In this work, we focus on two representative categories of AI-
driven traffic: AI search crawlers and AI data scrapers, as they
have emerged as the most active bot types in recent analyses [33].
AI search crawlers fetch content to support live AI services, such as
answering questions or summarizing pages, while AI data scrapers
focus on harvesting data to build large training corpora for models
like LLMs. Both generate large volumes of requests and access web
content in disruptive ways, as we characterize below.
AI Search Crawler. To characterize the access pattern of AI search
crawlers, we run an experiment using the LangChain Local Deep
Researcher [34] to simulate an AI agent answering real-world
information-seeking questions in the GAIA benchmark [23], which
consists of over 450 non-trivial questions with unambiguous an-
swers. To focus specifically on web search behavior, we extract
22 questions that require only access to search engines, excluding
those that depend on external tools such as calculators, PDF readers,
or Python compilers. The Local Deep Researcher agent conducts
web-based research by iteratively querying a search engine, retriev-
ing content, and refining its response with each loop. We use the
DuckDuckGo search engine to execute each query, with responses
generated using the Qwen3-8B model. While this experiment sim-
ulates a single agent, the behavior it exhibits is representative of
emerging AI search patterns. Our goal is not to model aggregate
traffic volumes, but to highlight structural trends, such as low con-
tent reuse and broad page coverage, that can affect caching and
backend systems.

Figure 1 shows the agent’s accuracy and unique access ratio as a
function of the number of search-and-retrieval loops. In each loop,
the agent issues a query and retrieves three results. Increasing the
number of loops expands the agent’s access to potentially relevant
content, but also increases total traffic volume. We vary the loop
count to understand how iterative retrieval influences both task
quality (measured by accuracy) and traffic behavior (measured by
unique access ratio). To assess how efficiently the agent utilizes
this traffic, we define the unique access ratio as the fraction of page
requests within a single GAIA task that target previously unseen
pages in that task. Across all loop counts, the unique access ratio

(a) Accuracy: the number of correct answers over 22 tasks.

(b) Unique access ratio: the distribution of unique URL requests
across tasks. High ratios (70–100%) indicate low content reuse
and broad coverage.

Figure 1: Accuracy and unique access ratio of Local Deep
Researcher on 22 GAIA benchmark tasks, evaluated over
increasing search loop counts using DuckDuckGo. Each loop
issues a query and retrieves three results.

remains consistently high, typically between 70% and 100%, indicat-
ing that the agent fetches mostly new content rather than revisiting
previously seen pages. Meanwhile, accuracy improves with more
loops, increasing from 9.1% with one loop to 27.3% with five loops.
The result aligns with the results from the GAIA leaderboard on
HuggingFace, where the Qwen3-32B family achieves an average
score of 21.59% [29]. These results suggest that AI search agents
rely on accessing a broad set of unique pages to achieve better
task performance, and that iterative retrieval contributes both to
improved accuracy and to high-volume, low-reuse traffic patterns.

Notably, our analysis of the fetched URLs reveals that the most
frequent accessed domain was en.wikipedia.org. As one of the
largest content providers, Wikipedia has been significantly im-
pacted by AI traffic, as discussed earlier. In §2.3, we examine how
AI traffic degrades the effectiveness of Wikimedia’s edge caching
infrastructure.
AI Data Scraper. Unlike AI search crawlers that operate interac-
tively and incrementally, data scrapers often traverse the web in
bulk, issuing high-throughput requests across vast content domains.
We highlight three characteristics of AI scraper traffic: high unique
URL ratio, content diversity, and crawling inefficiency.

First, AI scrapers exhibit high unique access ratios. Public crawl
statistics from Common Crawl, which performs large-scale legit-
imate web crawls on a monthly basis, show that the vast ma-
jority of fetched pages are unique [16]. Our experiments using
Crawl4AI [50], a web crawling framework designed specifically
for LLMs, AI agents, and data pipelines, confirm that across vari-
ous search strategies (e.g., breadth-first, depth-first, best-first), the
unique URL ratio consistently approaches one. Although scrapers
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Figure 2: Wikimedia cache miss ratios across Varnish, ATS,
andMemcached under varying proportions of AI and human
traffic, along with unique URL ratios. AI and human work-
loads share about 20% overlapping content.

may occasionally revisit known content, they tend to do so infre-
quently. From the perspective of a web server, this behavior still
appears highly aggressive.

Second, AI scrapers show strong diversity in content selection.
Studies [21, 52] reveal that different AI crawlers target distinct
content types, some specialize in technical documentation (.md,
.pdf, .txt), while others focus on source code, media, or blog posts.
This variation creates uneven load distribution across the web,
with some domains (e.g., Wikipedia, GitHub, academic repositories)
becoming hotspots of scraper activity. The semantic skew of AI
traffic implies that web infrastructure must handle not only high
volumes but also concentrated pressure on specific content verticals.

Third, AI scrapers suffer from crawling inefficiency. Unlike ma-
ture search engine crawlers that carefully optimize URL selection
and revisit strategies, many AI data scrapers still generate a high
volume of low-value or failed requests. Recent analysis [52] report
that a substantial fraction of fetches from popular AI crawlers re-
sult in 404 errors or redirects, often due to poor URL handling. The
rate of these ineffective requests varies depending on how well
the crawler is optimized to target live, meaningful content. Such
inefficiencies not only reduce the quality of the collected data but
also waste significant bandwidth and impose avoidable load on
origin servers.

All together, both AI search crawlers and data scrapers generate
traffic that exhibits a scan pattern: a request stream that touches a
large number of distinct objects with little-to-no reuse in a short
period. In the context of storage and database systems, workloads
with scan pattern are known to degrade caching efficiency, as they
overwhelm limited cache capacity and prevent stable reuse [7, 20,
31, 32, 38, 42, 60].

2.3 Case Study: Wikimedia CDN
To measure the performance impact of evolving access patterns in
web caches, we prototype a CDN architecture based onWikimedia’s
production CDN. As discussed in §2.2, scan access pattern is a good
fit for representing AI traffic. We simulate human and AI traffic
using Zipfian and scan benchmarks, respectively.

CDN Architecture. Wikimedia’s production CDN features a glob-
ally distributed, two-tier caching hierarchy: a frontend cache layer
using Varnish, and a backend disk-based cache layer using Apache
Traffic Server (ATS). These cache nodes are deployed across mul-
tiple data centers worldwide, organized into core and edge sites.
Core data centers house origin servers and persistent storage, while
edge cache sites serve as entry points for user traffic, reducing
latency and offloading backend systems. The caching infrastructure
is backed by MediaWiki application servers, Memcached for meta-
data and template fragments, and MariaDB for persistent content
storage [41, 55, 57].
Prototype.Our prototype replicatesWikimedia’smulti-tier caching
architecture, with Varnish and ATS serving as HTTP accelerators
and frontend caches, and Memcached acting as the backend meta-
data store. Request handling follows Wikimedia’s cache pipeline.
All incoming HTTP GET requests are first processed by Varnish,
which caches full HTML responses for users. On a miss, the request
is forwarded to ATS. If the requested content is still not found, ATS
forwards the request to the MediaWiki application server. Medi-
aWiki then checks Memcached to retrieve any cached intermediate
artifacts, such as pre-parsed templates, Lua module output, page
metadata, and link tables, that can accelerate rendering [37, 53]. If
the necessary data is not found in Memcached, MediaWiki queries
MariaDB to fetch the raw wikitext, renders it into HTML, and re-
turns the response. The final rendered HTML is then cached in
Varnish and delivered to the client.
Experimental setup.We deploy the system on a CloudLab [19]
r6525 node with dual AMDEPYC 7543 CPUs (128 hardware threads).
The stack is containerized using Docker, with CPU allocations
manually tuned for each service. The Varnish cache is configured
with 256 MB and ATS with 512 MB of memory. Wikipedia content
is imported using MediaWiki’s importDump.php tool and a selected
XML stream from the 2025-05-20 enwiki dump [22].

Traffic is generated using Locust [35], with two distinct client
models: (1) Human users follow a Zipfian access distribution (𝛼 =
1.0), focusing requests on a small subset of popular pages; and (2)
AI users emulate scan-style workloads using a depth-first traversal
of internal links, resulting in broad, low-locality access patterns
Results. Figure 2 shows cache miss ratios across Varnish, ATS,
and Memcached as the proportion of AI traffic increases, together
with the fraction of unique URLs accessed. When traffic is purely
human-like, the Varnish miss ratio is low (17.3%), indicating effi-
cient caching. However, even modest amounts of AI traffic cause
a pronounced degradation: with just 25% AI traffic, the miss rate
nearly doubles to 32.2%. As the AI share continues to grow, cache
locality deteriorates rapidly, and the Varnish miss ratio reaches
51.8% under fully scan-dominated workloads. This degradation cor-
responds closely with the rise in unique URLs requested. From the
miss breakdown by traffic type, we see that AI requests contribute
disproportionately to total misses. Even with a balanced mix (50%
AI / 50% human), more than two-thirds of Varnish misses originate
from AI requests, showing that AI traffic drives cache churn and
evicts content valuable to human users.

Interestingly, ATS’s miss ratio decreases as the AI fraction in-
creases because it absorbs the rising number of Varnish misses.
Under AI workloads, many short-term revisits and overlapping
requests still miss in Varnish but hit in ATS, whose larger capacity
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(a) Mixed traffic combining human and
AI access patterns. Each dot represents an
unique requested object over time, and col-
ors distinguish object IDs. Diagonal lines
indicate sequential scan access.

(b) Overall cache hit ratio decreases sharply
with increasing scan ratio, indicating
higher backend load.

(c) Human traffic hit ratio across different
eviction algorithms under varying AI scan
ratios. Smarter policies maintain high hit
ratio for human traffic even under interfer-
ence.

Figure 3: Impact of mixed workloads on caching behavior.

retains full HTML pages longer. By contrast, Memcached’s miss
ratio slightly increases as AI traffic rises. Broader, low-locality AI
access triggers a larger variety of page templates and metadata
lookups in MediaWiki, expanding Memcached’s working set and
evicting previously hot entries. The increased Varnish and ATS
misses also push more requests toward MediaWiki, further stress-
ing Memcached.

Overall, assuming AI traffic follows a scan pattern while human
traffic presents a Zipfian distribution, these results show that AI
traffic not only increases misses at the edge but also alters the
dynamics of downstream caches, underscoring the need for cache
hierarchies that explicitly differentiate traffic types and isolate AI-
driven workloads to sustain performance for human users.

3 RETHINKINGWEB CACHE DESIGN
In this section, we outline our vision for cache systems that adapt
to the growing mix of human and AI workloads. We argue that
caches should evolve along two complementary directions.

In §3.1, we explore how caches can act as traffic filters, prior-
itizing reuse-heavy human requests and limiting the disruption
caused by low-locality AI traffic. We show that advanced eviction
algorithms can naturally serve this role, even without explicit traffic
classification.

In §3.2, we shift from algorithmic mechanisms to architectural
cache design that explicitly separates human and AI traffic across
tiers and policies. This separation aims to better align caching strate-
gies with the distinct characteristics of each workload, improving
efficiency, reducing backend load, and preserving service quality
as AI traffic continues to grow.

3.1 From Storage Layer to Traffic Filter
Traditional caches treat all traffic equally, but AI traffic can over-
whelm cache capacity and displace valuable human-serving con-
tent. We hypothesize that advanced eviction algorithms (e.g., SIEVE,
S3FIFO, ARC) can act as implicit traffic filters, deprioritizing scan-
like AI requests while preserving high hit rates for human traffic.
We test this hypothesis by running the following experiment.

We simulate mixed workloads that combine Zipfian (human-like)
and scan (AI-like) access patterns. Figure 3a visualizes a sample
request trace where 25% of the traffic follows a sequential scan

pattern (AI), while the remaining 75% follows a skewed Zipfian
distribution (human). Each dot represents an object request over
time, with colors distinguish object IDs. The diagonal lines cor-
respond to AI requests sequentially scanning new content, while
the dense region in the bottom reflects human traffic following
a Zipfian distribution, where a small number of popular objects
account for most accesses. Besides, the scan pattern intersecting
the dense region in the lower part of the figure means that AI and
human traffic can target the same popular content.

We quantify performance using two metrics: the overall cache
hit ratio, which measures the fraction of all requests (human and
AI) served from cache, and the human traffic hit ratio, defined as the
hit rate observed specifically on requests originating from human
traffic. While overall hit ratio reflects aggregate cache performance,
human traffic hit ratio captures how well the cache continues to
serve human users in the presence of interfering AI traffic.

We evaluate state-of-the-art cache eviction algorithms under
mixed workloads using a synthetic trace of 10 million requests over
10k unique objects. Human traffic follows a Zipfian distribution (𝛼 =
1.0), AI traffic performs sequential scans, with 10% overlap between
them. The cache size is configured as 10% of the working set. Fig-
ure 3b shows that the overall cache hit ratio drops significantly as
the scan ratio increases from 0 to 75% across all evaluated eviction
algorithms. Under pure Zipfian traffic, most algorithms achieve
70–80% hit rates, with SIEVE, S3FIFO, ARC, and LFU performing
the best. However, as the fraction of AI traffic increases, hit ratios
decline steeply, falling below 30% for all policies at a 75% scan ratio.
While overall hit ratio reflects aggregate cache performance, it can
obscure how well the cache continues to serve latency-sensitive
human traffic in the presence of interfering AI access. As shown
in Figure 3c, several state-of-the-art algorithms are able to pre-
serve high hit ratios for human traffic. These policies maintain over
75% hit ratio for human requests even when scan ratio reaches
50%, whereas simpler strategies like LRU, LFU, and FIFO degrade
more quickly. These advanced algorithms are effective at preserv-
ing human traffic due to their ability to quickly demote unpopular
objects [58]. For example, S3FIFO and TwoQ use a small FIFO queue
to quickly identify and evict one hit wonders [36, 54]; SIEVE uses
a moving hand to quickly remove unpopular object – the scan ac-
cesses in this case. While previous studies have evaluated these
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algorithms for overall cache hit ratios, their effectiveness in mixed
workloads has not been thoroughly explored.

Our results show that smarter eviction algorithms can serve as
lightweight traffic filters: even under substantial AI interference,
policies like SIEVE, S3FIFO, and ARC preserve high hit ratios for
human traffic. While frontend mechanisms, such as rate limiters or
bot detection, can help identify aggressive AI traffic, advanced cache
eviction policies offer an additional layer of protection. However,
simply bypassing AI traffic to the backend is not ideal as it increases
pressure on application servers, storage systems, and databases. In
the next section, we explore how to better accommodate AI requests
through alternative caching strategies and system design.

3.2 Composable Cache Architectures
Complementary to making existing caches more resilient, we pro-
pose a composable caching hierarchy that coordinates differentiated
tiers for human and AI workloads while enabling selective content
sharing across layers. Instead of strict separation, this design allows
overlapping cache tiers with distinct roles and policies but shared
intermediate representations.

To balance latency, capacity, and cost, human traffic should con-
tinue to be served primarily from edge caches optimized for low
latency and high hit ratios. These caches prioritize responsiveness
and can adopt scan-resistant eviction to preserve locality. Inter-
active AI crawlers (e.g., retrieval-augmented generation) require
moderate latency and can be routed to mid-tier caches such as
ATS, which balance capacity and responsiveness. Bulk AI scrapers
(e.g., training corpus builders) can tolerate higher latency and be
handled by deeper, cost-efficient caches near the origin, possibly
with delayed admission or rate-limiting.

Across these tiers, composable caching layers store overlapping
content shared by human and AI workloads. Overlap can be identi-
fied by tracking objects frequently requested by both traffic types,
promoting them to the shared tier while routing exclusive content
to separate caches. This shared layer retains commonly accessed
objects, reducing duplication and backend load.

Each tier applies policies suited to its traffic class. Human-facing
caches prioritize freshness and reuse, using short TTLs and ag-
gressive invalidation to reflect the latest content. AI-facing caches
emphasize coverage and efficiency, using longer TTLs, lazy inval-
idation, and coarse-grained batching to tolerate staleness. Logi-
cal partitioning (e.g., per-tenant slices) further isolates diverse AI
agents or task types, while selective sharing of popular content
maximizes reuse across workloads.

4 DISCUSSION AND OPEN CHALLENGES
While composable cache hierarchies provide a promising founda-
tion, several open questions remain before such systems can be
deployed at scale.
How can we reliably identify AI traffic? Accurate traffic iden-
tification underpins any differentiated caching strategy. Existing
methods rely on user-agent strings, IP-based heuristics, or behav-
ioral signatures, but these are unreliable as modern AI agents can
disguise themselves behind legitimate browsers or proxy endpoints.

A key question is whether caches can infer AI intent from access
dynamics such as reuse ratio, traversal depth, or burstiness. In the

longer term, we envision cooperative identification through stan-
dards like the Model Context Protocol (MCP), where AI systems
explicitly tag their requests with purpose, priority, and rate pref-
erences, allowing infrastructure to enforce cache-aware policies
without adversarial detection.
How should caches handle different AI traffic subclasses? AI
traffic is highly diverse, including bulk crawlers that collect training
data, iterative search agents that fetch related documents in short
bursts, and interactive assistants that retrieve context on demand.
Each subclass exerts distinct pressure on the cache hierarchy. Bulk
scrapers generate large volumes of unique objects with low reuse
and can tolerate higher latency; such requests could be redirected to
deep, rate-limited cache tiers. Search agents display moderate local-
ity and can benefit from mid-tier caches with predictive prefetching
and longer TTLs. Interactive assistants demand low latency and
freshness and should share optimized edge caches with human
traffic. A key research direction is developing workload-adaptive
cache controllers that detect these modes automatically and adjust
TTLs, eviction priorities, or throttling thresholds in real time.
How can caches express their objectives declaratively? To-
day’s caches optimize hidden metrics such as hit ratio or latency
without exposing their underlying trade-offs. Future systems should
instead support declarative cache objectives, allowing operators or
applications to specify explicit goals, such as minimize human re-
sponse latency, cap AI traffic bandwidth, or maximize reuse under
resource limits. These objectives can drive adaptive cache con-
trollers that continuously tune admission, eviction, and refresh
policies based on observed workload conditions. By aligning con-
trol decisions with stated intent, caches can evolve from heuristic-
driven mechanisms into goal-oriented systems that balance fresh-
ness, reuse, and fairness across human and AI workloads.
How to design fair, predictable pricing that sustains open-
ness? AI activity risks undermining the web’s economic founda-
tions [51]. Serving AI traffic consumes significant storage, band-
width, and CPU resources while offering limited direct benefit to
content providers. How should cache usage be priced to reward
cache-efficient agents that reuse content and respect rate limits,
while discouraging redundant large-scale scraping? CDNs could
introduce usage-tiered pricing or priority access levels. The broader
challenge lies in balancing economic sustainability and openness,
ensuring that caching infrastructure remains publicly accessible
while distributing the cost of AI-driven load fairly among actors in
the web ecosystem.

5 CONCLUSION
AI traffic is fundamentally reshaping web caching. As low-locality
traffic from AI crawlers and scrapers grows, traditional caches
struggle to preserve performance for human users. We argue for
workload-aware cache designs that differentiate and coordinate
resources across traffic types. Using scan-pattern benchmarks and
a Wikimedia CDN case study, we show how AI workloads disrupt
locality and motivate tiered placement and differentiated policies.
Future caches must tackle challenges in traffic identification, work-
load classification, and fair pricing to sustainably support both
human and AI access at scale.
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